Update on Reactive Oxygen Species Activation of Ca Channels Reactive Oxygen Species Activation of Plant Ca Channels. A Signaling Mechanism in Polar Growth, Hormone Transduction, Stress Signaling, and Hypothetically Mechanotransduction
نویسندگان
چکیده
Reactive oxygen species (ROS) are highly reactive reduced oxygen molecules. Recent studies have shown that production of ROS occurs in response to many physiological stimuli in plant cells, including pathogen attack, hormone signaling, polar growth, and gravitropism. Evidence is emerging that ROS can function as cellular second messengers that are likely to modulate many different proteins leading to a variety of responses. One target of ROS signal transduction is the activation of Ca-permeable channels in plant membranes. ROS activation of Ca channels may be a central step in many ROS-mediated processes, such as stress and hormone signaling, polar growth, development, and possibly during mechanotransduction.
منابع مشابه
Abscisic acid activation of plasma membrane Ca(2+) channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants.
The hormone abscisic acid (ABA) regulates stress responses and developmental processes in plants. Calcium-permeable channels activated by reactive oxygen species (ROS) have been shown recently to function in the ABA signaling network in Arabidopsis guard cells. Here, we report that ABA activation of these I(Ca) Ca(2)+ channels requires the presence of NAD(P)H in the cytosol. The protein phospha...
متن کاملTRPM2 Channel-Mediated ROS-Sensitive Ca2+ Signaling Mechanisms in Immune Cells
Transient receptor potential melastatin 2 (TRPM2) proteins form Ca(2+)-permeable cationic channels that are potently activated by reactive oxygen species (ROS). ROS are produced during immune responses as signaling molecules as well as anti-microbial agents. ROS-sensitive TRPM2 channels are widely expressed in cells of the immune system and located on the cell surface as a Ca(2+) influx pathway...
متن کاملPlant signaling networks involving Ca2+ and Rboh/Nox-mediated ROS production under salinity stress
Salinity stress, which induces both ionic and osmotic damage, impairs plant growth and causes severe reductions in crop yield. Plants are equipped with defense responses against salinity stress such as regulation of ion transport including Na(+) and K(+), accumulation of compatible solutes and stress-related gene expression. The initial Ca(2+) influx mediated by plasma membrane ion channels has...
متن کاملCalcium signaling and cytotoxicity.
The divalent calcium cation Ca(2+) is used as a major signaling molecule during cell signal transduction to regulate energy output, cellular metabolism, and phenotype. The basis to the signaling role of Ca(2+) is an intricate network of cellular channels and transporters that allow a low resting concentration of Ca(2+) in the cytosol of the cell ([Ca(2+)]i) but that are also coupled to major dy...
متن کاملRedox regulation of transient receptor potential channels.
SIGNIFICANCE Environmental and endogenous reactive species such as reactive oxygen species (ROS), reactive nitrogen species (RNS), and other electrophiles are not only known to exert toxic effects on organisms, but are also emerging as molecules that mediate cell signaling responses. However, the mechanisms underlying this cellular redox signaling by reactive species remains largely uncharacter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004